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Some New Multistep Methods 
for Solving Ordinary Differential Equations 

By G. K. Gupta and C. S. Wallace 

Abstract. Three sets of linear multistep formulae for solving stiff and nonstiff ordinary 

differential equations are presented. Two of the sets are based on Adams-Moulton and 

stiff formulae used by Gear [19691. A third set of formulae based on least-squares 

approximation is shown to be stiffly-stable up to order 8 and is suitable for solving stiff 

differential equations. 

1. Introduction. The general linear multistep (m-step) method for the numerical 
solution of the differential equation 

y' = f(x, Y) (y a vector) 

is conventionally described by the equation 

?tmYn + m + Ym-1 Yn+m-1 + ?..+ ?oYn 

(1.1) =h(fmfn+m + m-lYn+m-l +--- +Ofn)l 

where h is the step size in x, assumed constant, Yk is the computed value of y at 
Xk = kh, and fk = f(xk, Yk). 

The method described by (1.1) is explicit if ,Bm = 0, and implicit otherwise. As 
usually applied, Eq. (1.1) is solved to give Yn+m as a function of preceding y and f 
values. 

An analysis of such methods is given by Henrici [1962], who concentrates on 
two special cases of the general method. The first, which he describes as methods 
based on integration, have only one nonzero a (in addition to am). The second de- 
scribed as methods based on differentiation, have only one nonzero ,B (,Bm if the 
method is implicit). The latter case has recently received attention arising from the 

work of Gear [1969] who has shown that methods of this kind may be useful for 
stiff systems, whereas the former includes, inter alia, the Adams methods. 

Investigation of methods not falling into either of these classes has been, perhaps, 
inhibited by the fact that, while the general m-step method is described by 2m + 1 

parameters, it is known (Dahlquist [1956]) that an m-step method can have satisfactory 
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stability only if its order does not exceed m + 1 (m odd) or m + 2 (m even). A 

method is said to be of order q if it is exact for equations whose true solution is a 

polynomial of degree q or less. The requirement that an m-step method be of order m 
yields (m + 1) conditions on its a and ,B parameters, leaving the method with m 
degrees of freedom. Complete exploration of the methods encompassed by these 

degrees of freedom is difficult in the formalism of Eq. (1.1) which leads to rather 

complicated expressions for the a and : parameters in terms of degrees of freedom. It 

was shown by Wallace and Gupta [1973] that these m-degrees of freedom can be 

conveniently isolated by representing the method by a polynomial C(x) of degree m, 

which we have called a 'modifier polynomial'. The relation between the coefficients 
of C(x) and the coefficients a and ,B of (1.1) has been shown by Wallace and Gupta 

[1973]. Each multistep method can be represented by a polynomial C(x) and, for 

the methods used by Gear [1969], we have 

(1.2) C(x) = (x + 1) (x + 2) *-- (x + m)/m! . 

For Adams-Moulton methods, C(x) is such that 

C(x) 0 at x - 

and 

C'(x) = (x + 1) (x + 2) * *(x + m - 1); m > 2. 

Hence, for m = 2, C(x) = (x + 1)2. 

Representation of multistep methods by modifier polynomials leads to 

computer algorithms similar to that of Nordsieck [1962] and Gear [1971a]. 
The main components of an algorithm to solve ODE using multistep methods 

are the starting method, method of solving the implicit equation', the multistep method 

(or formula. We use both terms to mean the same thing.), the technique used to 

handle variable steps and the scheme used to select step sizes. In this paper, we only 

consider the formula part of the whole algorithm. However, existing algorithms, such 

as that of Gear [L97 1 bl., are app-licable to the nw fornmlae we- wilL present 

The formulae being investigated can be divided into two classes: for stiff equations 

and for nonstiff equations. The stability requirements for the two classes are different, 

and, for nonstiff equations, we only require that, for small hX, the dominant root of 

the polynomial 

(1.3) p(r) - hXu(r) = 0, 

where 

m m 
p(r) a ri and a(r) = 3ri 

f=O i=o 
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be approximately equal to the solution, i.e., eh'. This is described as relative stability 

by Gear 119691. In solving stiff equations, we require that the method be stiffly-stable. 

A method is stiffly-stable if the method is absolutely stable (i.e., gives convergent 

solutions) in R1 (Re(hX) < D) and gives accurate solutions in R2 (D < Re(hX) < a*, 

VIm(hX)I <0) as shown in Fig. 1. 

hX-PLANE 

C//</~A?\~\\ \ 

FIGURE 1 

Other requirements have been suggested for solving stiff equations, e.g., A-stability 

suggested by Dahlquist [1963] requires that method be absolutely stable in the 

negative half of hX-plane. A(oa)-stability suggested by Widlund [1967] requires that 

method be absolutely stable in the wedge-shaped region S(a) as shown in Fig. 2, for 

any 0 6 a < ir/2. A(Qr/2)-stable methods are A-stable. 

hX-PLANE 

S (t 

FIGURE 2 

Stiff-stability implies A(0)-stability and hence the following results: 

THEOREM 1. For multistep methods of order greater than 2, no m-degree (m- 

step) implicit stiffly-stable method can be of order greater than m. 

THEOREM 2. No explicit multistep method can be stiffly-stable. 
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Both theorems follow from the results of Widlund [1967]. 
To study the stability of a method, we may plot the locus of hX = p(r)/O(r) for 

r = ei (O 6 p < 27r). We call this locus the stability curve of the method. For 
stiff-stability, we require that the method be absolutely stable at hX = M, i.e., u(r) 
has roots within the unit circle. Based on the continuity argument, we can say that 
the region of hX-plane which can be reached from hX = m without crossing the stability 
curve is also stable. For methods of order greater than 2, the parameter D must be a 
negative number and so, for stiff-stability, the stability curve must turn to the positive 
half of the hX-plane. The stability curve intersects the real axis at at least r = ? 1. 
At r = 1, we have hX = 0 and so hX must be positive for r=- 1. We now summarise 
the discussion in the following theorem: 

THEOREM 3. For an implicit linear multistep method of order greater than 2 
to be stiffly-stable, the following conditions are necessary and sufficient: 

(i) p(r) has all roots within the unit circle except one simple root on the circle 
at r = 1 (this is root condition), 

(ii) a(r) has all roots within the unit circle, 
(hi) hX at r = - 1 is positive, 
(iv) the stability curve does not intersect the negative real axis. 
We assume that the stability curve does not intersect the real axis at more than 

the two points corresponding to r = ? 1, this being the case with all the methods 
which have been studied so far and have satisfactory stability. For such methods, the 
hX-value at r = - 1 is a good indication of the overall stability of a particular formula. 
(The stability at hX = 0 is important and so must be investigated in detail.) 

Since no linear multistep method of order greater than 2 can be A-stable, we 
must use the criterion of stiff-stability and/or A(ca)-stability. Thus, the important 
parameters of the stability curve of a method used for stiff equations are D, 0 (as 
shown in Fig. 1) and wedge angle ae (as shown in Fig. 2). It is quite easy to find the 
wedge angle a and parameter D from a stability curve, but it is not clear from the 
definition of stiff-stability how 0 should be obtained. In the definition of stiff- 
stability, we have said that in region R2 (Fig. 1) the numerical solutions should 
be accurate. In our opinion, that definition needs to be made more precise by stating 
that in region R2 we require that 

(a) the solutions be accurate around the origin and in the subregion enclosed 
by the stability curve, the lines Re(hX) = 0 and Imr(hX) = ? 0, and 

(b) the solutions be absolutely stable in the subregion enclosed by the three 
lines Re(hX) = D, Im(hX) = ? 0 and the stability curve. 

0 can now be obtained based on the requirement (a) of accuracy. If the stability 
curve is the locus of r = ei as discussed earlier, following Gupta and Wallace [1974], 
we can show that 

(1.4) if-h) Km+1(hX)m+1 +Km+2(hX)m+2 +?.*, 
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where hX is the point on the stability curve corresponding to if and Km + 1, Km + 2 
are truncation error coefficients of the formula (of order m) being used. 

To find 0, we start to investigate whether relation (1.4) is being satisfied for 
points on the stability curve near the origin. The value of 0 is then given by Im (hX), 
where hX is the point closest to the origin where the relation first breaks down. We 
have arbitrarily taken the maximum value of 0 as 0.75, assuming that we are not 
really interested whether 0 is greater than 0.75. 

For some formulae, 0 will be limited by the requirement of absolute stability as 
explained in (b). This may happen when the stability curve touches the line Im(hX) = 
? 0, as for the sixth-order method used by Gear [1969]. 

In this paper, rather than presenting stability curves of all the methods we study, 
we will present the values of D, 0 and a and these, in our opinion, are sufficient to 
compare the stability of various methods. 

In Section 2, we present new formulae for stiff and nonstiff equations based on 
the presently used formulae. In Section 3, we present some more new high-order 
formulae for stiff equations. In Section 4, the results of numerical experiments are 
presented and in Section 5, these results are briefly discussed. 

2. Method Based on Interpolation. The most commonly used methods are the 
methods based on interpolation, that is, the Adams-Moulton methods for nonstiff 
differential equations and the methods used by Gear [1969] for stiff equations. We 
label these methods as Am and I., respectively, (for degree m). Now, we will discuss 
how new methods may be developed from these methods. 

Consider, for example, the modifier polynomial C(x) of degree 3 

(2.1) C(x) = CO + C1X + C2X2 + c3x3. 

The truncation error at the nth step is Km + 1 hm + ly(m + )(xn), and Km+ is 
given by (cf. Wallace and Gupta [1973]) 

(2.2) Km+ 1 = (cO - c 1/2 + C2/6)/6C3- 

To study the stability of the modifier polynomial of degree 3, we have from 
Wallace and Gupta [1973] 

(2.3) hX (atr=-1)= r 
Co - 0.5c1 + 0.25c2 

Now the following observations can be made on the basis of (2.2) and (2.3): 
(1) Since p(r) is not a function of co, the stability of hX = 0 is independent of 

co. 

(2) If hX (at r - - 1) is positive, then reducing co increases the value of hX 
(at r = - 1) till the denominator in (2.3) is equal to zero and hence hX (at r = - 1) =00 
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(This will happen before co = 0 which corresponds to an explicit method.) 
(3) If hX (at r = - 1) is negative, then reducing co reduces the (absolute) value of 

hX (at r = - 1) till it reaches a limiting value at co = 0. 
(4) If Km + 1 is positive, then reducing co reduces Km + 1 till Km + 1 = ? 
Based on these observations we have developed some new formulae as explained 

below: 
2.1. For Stiff Equations. The formulae Im used by Gear [1969] all have Km+ 1> 

0 and hX (at r = - 1) > 0. Thus we can improve the truncation error by reducing 

co till the limiting case of hX (at r = - 1) = ow is reached. We have done this and have 
thus obtained a new set of formulae which we label as Im . The modifier polynomials 
corresponding to Im and I*m have the same coefficients cl, c2, ... , Cm but co are 

different. We tabulate new values of co (scaling coefficients so that cl = 1) and new 
values of Km+ 1- 

M 2 3 4 5 6 

*0 for I 2/3 6/11 24/50 120/274 720/1764 

* for I* 1/2 5.25/11 22.5/50 116.25/274 708.75/1764 0 m 

K%-1 for I 1/3 1/4 1/5 1/6 1/7 

K for I* 1/12 1/8 11/80 13/96 57/448 m-Fl m 

TABLE 1 

The stability of I* was investigated and, as expected, all the stability curves 
satisfied the stiff-stability requirements. The stability of I* is compared with that 
of Im in Table 4, and we can see that, for m = 5 and 6, the stability of I* is better 
than that of Im. 

2.2. For Nonstiff Equations. We know that the Adams-Moulton method of 
order 2 (A2 or trapezoidal rule) is A-stable. For A3, we have hX (at r = - 1) = - 6 

and, for A4, the value of hX (at r = - 1) = - 3 and so on. That is, the region of 
absolute stability is reducing as the order of the formula increases. Ideally, we want 
that the region of absolute stability be larger for higher-order formulae. While using 
lower-order methods, the hX value must be kept fairly small in order to obtain 
reasonable accuracy, and, hence, the large region of absolute stability of the lower- 
order formulae is of no use and could be reduced by reducing co which in turn reduces 
the truncation error coefficient Km+ 1 

We must now consider how far Km + 1 should be reduced and how small a region 
of absolute stability will be sufficient. Regarding Km + 1, we want that the error term 
of O(hm + 2) should not be greater than O(hm + 1) for reasonable values of hX. This 

is required because, for a general-purpose method, there is little point in eliminating 
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errors of order m if the result is an error of order m + 1 which is actually larger in 
magnitude. The second consideration is that, for nonstiff equations, IhXI is not ex- 
pected to exceed ?2, because IhXI = ? will give only about 4-5 digit accuracy when a 
method of order 10 is used. 

Based on these considerations, we have obtained new values of co for the Adams- 
Moulton methods. We label these formulae with new value of c0 as Am . We have 
arbitrarily chosen Km +1 = 1/96 (for m = 2 to 7) for A* because this value was close 

to satisfying the criterion we discussed above and also because having the same Km+1 
for all m will be convenient in the algorithm. 

M== ~2 3 4 5 6 7 

c0 for A 1/2 5/12 9/24 251/720 475/1440 19087/60480 

cO for A* 41/96 37/96 517/1440 245/720 19717/60480 38049/120960 
0 m 

Km+l for A 1/12 1/24 19/720 27/1440 863/60480 1375/120960 

K for A* 1/96 1/96 1/96 1/96 1/96 1/96 m+1 m 

hX(-1) for A 0 -6.0 -3.0 -1.8 -1.2 -0.77 m 

HX(-1) for A* -6.9 -3.4 -2.2 -1.5 -1.0 -0.73 

TABLE 2 

We can see that as the order increases, the difference between Am and A* becomes 
smaller. This is because higher-order Adams-Moulton methods have quite small 
regions of absolute stability and also their value of Km +1 is small. 

3. New Methods for Stiff Equations Based on Least Squares. As indicated in 
Section 2, it seems that one of the best algorithms available to solve stiff differential 
equations is that of Gear [1971 a, b] . In Section 2, we suggested how new formulae could 
be obtained from the formulae used in this algorithm by Gear. Though these new formu- 
lae are more accurate and slightly more stable, there still remains room for further 
improvement. Our aims in investigating other formulae are twofold. First, we want 
that the stability curves of the new formulae approach A-stability as closely as possible, 
i.e., the value of D should be smaller, and a and 0 should be larger than for methods 
used by Gear [1969]. Secondly, we want that the new set of formulae be stable for 
as high an order as possible. Some such formulae were presented in Wallace and 
Gupta [1973], but, except for one set of formulae (called Li4m in that paper), the 
truncation error was too large for the formulae to be useful. 

The modifier polynomials corresponding to the new formulae we are presenting 
in this section have a zero at x = - 1, and their first derivatives provide a least-squares ap- 
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proximation to points (0, 1), (- 1, 0), (- 2, O), . . , (- n, 0), (n > m - 1), the value of 

n was so chosen that the formula was stiffly stable and the truncation error was small. 

Morrison [1969] explains the algorithm used in obtaining these formulae based on 

Legendre polynomials. The coefficients ci of the modifier polynomials C(x) for these 

formulae are presented in the Appendix. Also presented in the appendix are the 

coefficients az, ij3 for these methods. 
In Table 3, we present the values of Km+ 1 for the formulae used by Gear [1969], 

and these new formulae we have obtained (which are labelled as Lm). We also present 

the values of the stability parameters D, 0, a of Lm in Table 4. In Fig. 3, we pre- 

sent the stability curves of methods Lm for m = 3 to 6. The stability curves of L7 

and L8 are very close to that of L6 and so have not been shown. Also, we have 

shown parts of the stability curves of I5 and I6 for comparison. 

m=_ 3 4 5 6 7 8 

1 1 1 1 
m 4 5 6 7 

L 0.104 0.15 0.28 0.602 1.6 5.0 

TABLE 3 

Truncation error coefficient Km+ 1 of least-squares polynomials 

I* I L 
m m m 

D m D l ce D e ca 

3 -0.23 0.75 85.5 -0.1 0.75 86.0 -0.63 0.75 82.3 

4 -0.85 0.75 76.0 -0.7 0.75 73.5 -1.36 0.75 74.8 

5 -2.16 0.75 58.0 -2.4 0.75 51.8 -1.39 0.75 70.1 

6 -4.82 0.61 26.0 -6.1 0.50 17.2 -1.75 0.75 65.7 

7 Unstable Unstable -1.79 0.75 64.8 

8 Unstable Unstable -1.81 0.75 63.6 

TABLE 4 

Stiff-stability parameters D and 0 and A(Q)-stability parameter a for various formulae 

4. Numerical Results. As explained in Wallace and Gupta [1973], we are 

using an algorithm similar to DIFSUB of Gear [1971b] to test the performance of the 

individual formulae. The modified algorithm uses a starting procedure with a series of 

variable-order methods till a polynomial approximation of desired degree is obtained. 

After that, the step size and the modifier polynomial being used are not changed. 
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The test problem was 

y' = vy1 - wy2 + (- v + w + l)eX, Y= WY1 + (- v - w + l)ex, 

Y1(0)= 1, Y2(0)=1. 

The exact solution is 

y, = c1e"X cos(wx + c2) + ex, Y2 = c1evx sin(wx + c2) + ex 

for the given initial conditions c1 = 0, c2 = 0. 

The eigenvalues of the jacobian of the system of equations are v ? iw. We chose 
v = - 80 and w = 8 for testing stiff equations and v = 1 and w = 0 for testing non- 

stiff equations. The step size used was 1/8 for both, and the numerical solution was 
computed from x = 0.0 to x = 10.0. 

m A A* m m 

2 1.137E-2 1.804E-3 

3 6.612E-4 1.864E-4 

4 4.856E-5 2.021E-5 

5 4.007E-6 2.272E-6 

6 3.528E-7 2.623E-7 

TABLE 5 

Maximum error at x 10.0 for nonstiff methods (hX = 1/8) 

Table 5 gives the maximum error (maximum of errors in the solutions y1 and Y2) 
at x = 10.0 for nonstiff formulae Am and A* and Table 6 for stiff formulae Im, 
I* and Lm. All computing was done on a CDC 3200 machine (48-bit word, 36-bit 
mantissa). 

m I I* L 
m m m 

2 6.378E-5 1.746E-5 1.747E-5 

3 5.656E-6 2.932E-6 2.459E-6 

4 5.339E-7 3.739E-7 3.940E-7 

5 5.246E-8 4.305E-8 8.123E-8 

6 5.243E-9 4.700E-9 1.863E-8 

7 Unstable Unstable 5.214E-9 

8 Unstable Unstable 1.674E-9 

TABLE 6 

Maximum error at x = 10.0 for stiff methods (hX = 10 ? i) 

5. Discussion and Conclusions. We have presented methods which are better 
than methods being used presently; for nonstiff equations, methods A* are more 
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accurate than the Adams-Moulton methods, especially for order 6 6. For stiff 
equations, I* are more accurate than the formulae used by Gear [1969] but similar 
to Im are unstable for m > 7. Lm are high-order methods stiffly-stable for m < 8 
and are generally more stable than Im. We expect these new formulae to be quite 
useful in improving the present algorithms such as that of Gear [1971b]. 

Appendix. Let the modifier polynomial for Lm = =Oc1x'. We tabulate Cj for 
formulae of degree 3 to 8 (cl = 1.0). 

mm ~~~3 4 5 

CO .4687814703E0 .4478808250E0 .4380080363E0 

C2 .6570996979E0 .7413433044E0 .7845665359E0 

C3 .1258811682E0 .2091131486E0 .2581998306E0 

C .1988901927E-1 .3763231522E-1 

C5 .2007056812E-2 

~m= 1 6 7 8 

C0 .4293908371E0 .4252280277E0 .4224433336E0 

C2 .8168964245E0 .8346135193E0 .8467063986E0 

C3 .5209156055E-1 .3155972849E0 .3306145264E0 

C4 .4457494121E-2 .6196227876E-1 .6917486868E-1 

C .1472432240E-3 .6552469094E-2 .8252267597E-2 

C6 .3540405890E-3 .5622383395E-3 

C .7667697333E-5 .2036050560E-4 

l C8 .3039471181E-6 

We also present the coefficients ai and A3i for formulae Lm, m = 3 to 8. Note 
that go = 0.0 for all formulae. 

El 3 4 5 6 7 8 

cc -0.06344 0.06512 -0.06497 0.06145 -0.06041 0.05976 

c 0.37160 -0.41795 0.47337 -0.50752 -0.55769 -0.60984 

OC2 -1.30816 1.16325 -1.48838 1.83520 -2.28502 2.79586 

OL3 1.0 -1.81042 2.57568 -3.75212 5.41112 -7.54072 

cc4 1.0 -2.49570 4.61546 -8.03577 13.12039 

cc5 1.0 -3.25247 7.51356 -15.11693 

6% 1.0 -4.10119 11.28474 

cc7 ~~~~ ~~~~~~1.0 -4.99327 

cc8 ~~~~~~~~~~~~~~1.0 
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3 4 5 6 7 8 

I -0.09013 0.05855 -0.04857 0.04468 -0.04230 0.04053 

62 0.37664 -0.20790 0.20319 -0.22754 0.25473 -0.28339 

63 0.46878 0.17882 -0.24415 0.39529 -0.57313 0.78462 

64 00.44788 -0.10763 -0.12711 0.46659 -0.97484 

65 0.43801 -0.40868 0.26504 0.17538 

66 0.42939 -0.75751 0.97171 

67 0.42523 1.12422 

8 ~~~~~~~~~~~~~~~~0. 42244 

hX-PLANE 7.0 

/ ~~~~~~~~~~~~~6.0 

/\ \ \ \ \ 25.0 

L3 

4 - - 14.0 

L6 

L7 

3.0 

8 

2.0 

6 6 ~~~~~~~~~~~~~~~~~1.0 

0 
-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 

FIGURE 3. Stability curves for some methods (stability curves for L7 and L8 
are very close to the one for L6) 
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